976 research outputs found

    Anthropogenic Matrices Favor Homogenization Of Tree Reproductive Functions In A Highly Fragmented Landscape

    Get PDF
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Species homogenization or floristic differentiation are two possible consequences of the fragmentation process in plant communities. Despite the few studies, it seems clear that fragments with low forest cover inserted in anthropogenic matrices are more likely to experience floristic homogenization. However, the homogenization process has two other components, genetic and functional, which have not been investigated. The purpose of this study was to verify whether there was homogenization of tree reproductive functions in a fragmented landscape and, if found, to determine how the process was influenced by landscape composition. The study was conducted in eight fragments in southwest Brazil. The study was conducted in eight fragments in southwestern Brazil. In each fragment, all individual trees were sampled that had a diameter at breast height ≥3 cm, in ten plots (0.2 ha) and, classified within 26 reproductive functional types (RFTs). The process of functional homogenization was evaluated using additive partitioning of diversity. Additionally, the effect of landscape composition on functional diversity and on the number of individuals within each RFT was evaluated using a generalized linear mixed model. appeared to be in a process of functional homogenization (dominance of RFTs, alpha diversity lower than expected by chance and and low beta diversity). More than 50% of the RFTs and the functional diversity were affected by the landscape parameters. In general, the percentage of forest cover has a positive effect on RFTs while the percentage of coffee matrix has a negative one. The process of functional homogenization has serious consequences for biodiversity conservation because some functions may disappear that, in the long term, would threaten the fragments. This study contributes to a better understanding of how landscape changes affect the functional diversity, abundance of individuals in RFTs and the process of functional homogenization, as well as how to manage fragmented landscapes. © 2016 Carneiro et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.1110CAPES, Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorCCFC, Crohn's and Colitis Foundation of CanadaCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    El propósito personal y sus fuentes de sentido

    Get PDF
    El ser humano afronta mejor los desafíos y dificultades de la vida si está motivado por una causa con sentido -es decir, un propósito. Sin embargo, a veces, el propósito puede transformarse en algo obsesivo y generar culpa, frustración o grandes insatisfacciones

    A One-Parameter Family of Hamiltonian Structures for the KP Hierarchy and a Continuous Deformation of the Nonlinear \W_{\rm KP} Algebra

    Full text link
    The KP hierarchy is hamiltonian relative to a one-parameter family of Poisson structures obtained from a generalized Adler map in the space of formal pseudodifferential symbols with noninteger powers. The resulting \W-algebra is a one-parameter deformation of \W_{\rm KP} admitting a central extension for generic values of the parameter, reducing naturally to \W_n for special values of the parameter, and contracting to the centrally extended \W_{1+\infty}, \W_\infty and further truncations. In the classical limit, all algebras in the one-parameter family are equivalent and isomorphic to \w_{\rm KP}. The reduction induced by setting the spin-one field to zero yields a one-parameter deformation of \widehat{\W}_\infty which contracts to a new nonlinear algebra of the \W_\infty-type.Comment: 31 pages, compressed uuencoded .dvi file, BONN-HE-92/20, US-FT-7/92, KUL-TF-92/20. [version just replaced was truncated by some mailer

    Failure Detection and Location on Manufacturing Systems: a Complex Network Approach

    Get PDF
    [EN] This paper presents a modeling methodology, detection and isolation of faults on the operative part of Flexible Manufacturing Systems (FMS) through a Complex Networks (CN) approach. As a result, an online fault detection and location scheme is proposed, based on the structural symmetry of interrelation and the non-distinguishable dynamic of the complex network model. Moreover, a second scheme is implemented, which is based on the detection of a fault through the observation of an abrupt change (produced by the fault) in the ith order derivatives of the state variables on Linear Time-Invariant (LTI) system’s networks. In this context, an online monitoring and signal acquisition system was developed to validate the schemas described above on a Canning Process Line (CPL). The theoretical and experimental results validate the schemas and confirm the existence of phenomena like self-regulation, symmetry and organization, in manufacturing systems.[ES] En este trabajo se presenta una metodología de modelado, detección y aislamiento de fallas en la parte operativa de los Sistemas de Manufactura Flexible (SMF), desde el enfoque de la teoría de Redes Complejas (RC). Como resultado, se propone un esquema en línea de detección y localización de fallas, basado en la simetría estructural de interrelación y la dinámica no distinguible del modelo de red compleja. Además, se implementa un segundo esquema que se basa en la detección de una falla, a través de la observación de un cambio abrupto (producido por la falla) en la derivada de i-ésimo orden de las variables de estado, de una red de sistemas Lineales e Invariantes en el tiempo (LIT). En este contexto, un sistema de monitoreo en línea y adquisición de señales es desarrollado para validar los esquemas antes descritos en una Línea de Proceso de Enlatado (LPE). Los resultados teóricos y experimentales validan los esquemas y confirman la existencia de fenómenos como auto regulación, simetría y organización, en los sistemas de manufactura.Este trabajo fue apoyado por el Consejo Nacional de Ciencia y Tecnología CONACyT, con el número de becario 743557; y el TecNM/Instituto Tecnológico de Aguascalientes.Reyes-Luévano, J.; Ruiz-Beltrán, E.; Castañeda-Ramos, L.; Orozco-Mora, J. (2018). Detección y Aislamiento de Fallas en Sistemas de Manufactura desde el Enfoque de Redes Complejas. Revista Iberoamericana de Automática e Informática. 16(1):36-47. doi:10.4995/riai.2018.9662SWORD364716

    Analysis Of The Ergosterol Biosynthesis Pathway Cloning, Molecular Characterization And Phylogeny Of Lanosterol 14 α-demethylase (erg11) Gene Of Moniliophthora Perniciosa

    Get PDF
    The phytopathogenic fungus Moniliophthora perniciosa (Stahel) Aime & Philips-Mora, causal agent of witches’ broom disease of cocoa, causes countless damage to cocoa production in Brazil. Molecular studies have attempted to identify genes that play important roles in fungal survival and virulence. In this study, sequences deposited in the M. perniciosa Genome Sequencing Project database were analyzed to identify potential biological targets. For the first time, the ergosterol biosynthetic pathway in M. perniciosa was studied and the lanosterol 14α-demethylase gene (ERG11) that encodes the main enzyme of this pathway and is a target for fungicides was cloned, characterized molecularly and its phylogeny analyzed.ERG11 genomic DNA and cDNA were characterized and sequence analysis of the ERG11 protein identified highly conserved domains typical of this enzyme, such as SRS1, SRS4, EXXR and the heme-binding region (HBR). Comparison of the protein sequences and phylogenetic analysis revealed that the M. perniciosa enzyme was most closely related to that of Coprinopsis cinerea.374683693Aime, M.C., Phillips-Mora, W., The causal agents of witches’ broom and frost pod rot of cacao (chocolate, Theobroma cacao) from a new lineage of Marasmiaceae (2005) Mycologia, 97, pp. 1012-1022Albertini, C., Thebaud, G., Fournier, E., Leroux, P., Eburicol 14α-demethylase gene (CYP51) polymorphism and speciation in Botrytis cinerea (2002) Mycol Res, 106, pp. 1171-1178Altschul, S.F., Gish, W., Miller, W., Myersewand Lipman, D.J., Basic local alignment search tool (1990) J Mol Biol, 215, pp. 403-410Bak, S., Kahn, R.A., Oisen, C.E., Halkier, B.A., Cloning and expression in Escherichia coli of the obtusifoliol 14α-demethylase of Sorghum bicolor (L.) Moench, a cytochrome P450 orthologous to the sterol 14α demethylases (CYP51) from fungi and mammals (1997) Plant J, 11, pp. 191-201Barrett-Bee, K., Dixon, G., Ergosterol biosynthesis inhibition: A target for antifungal agents (1995) Acta Biochim Pol, 42, pp. 465-480Bellamine, A., Mangla, A.T., Nes, W.D., Waterman, M.R., Characterization and catalytic properties of the sterol 14α-demethylase from Mycobacterium tuberculosis (1999) Proc Natl Acad Sci USA, 96, pp. 8937-8942Butler, G., Rasmussen, M.D., Lin, M.F., Santos, M.A., Sakthikumar, S., Munro, C.A., Rheinbay, E., Reedy, J.L., Evolution of pathogenicity and sexual reproduction in eight Candida genomes (2009) Nature, 459, pp. 657-662Carrillo-Muñoz, A.J., Giusiano, G., Ezkurra, P.A., Quindós, G., Antifungal agents: Mode of action in yeast cells (2006) Rev Esp Quim, 19, pp. 130-139Ceita, G.O., Macedo, J.N., Santos, T.B., Alemanno, L., Gesteira, A.S., Micheli, F., Mariano, A.C., Meinhardt, L.W., Involvement of calcium oxalate degradation during programmed cell death in Theobroma cacao tissues triggered by the hemibiotrophic fungus Moniliophthora perniciosa (2007) Plant Sci, 173, pp. 106-117D’souza, C.A., Kronstad, J.W., Taylor, G., Warren, R., Yuen, M., Hu, G., Jung, W.H., Tangen, K., Genome variation in Cryptococcus gattii, an emerging pathogen of immunocompetent hosts (2011) MBio, 2, pp. e00342-e00410Délye, C., Laigret, F., Corio-Costet, M.F., Cloning and sequence analysis of the eburicol 14α-demethylase gene of the obligate biotrophic grape powdery mildew fungus (1997) Gene, 195, pp. 29-33Dujon, B., Sherman, D., Fischer, G., Durrens, P., Casaregola, S., Lafontaine, I., De Montigny, J., Talla, E., Genome evolution in yeasts (2004) Nature, 430, pp. 35-44Evans, H.C., Cacao diseases - The trilogy revisited (2007) Phytopathology, 97, pp. 1640-1643Felsenstein, J., Confidence limits on phylogenies: An approach using the bootstrap (1985) Evolution, 39, pp. 783-791Formighieri, E.F., Tiburcio, R.A., Armas, E.D., Medrano, F.J., Shimo, H., Carels, N., GóEs Neto, A., Sardinha-Pinto, N., The mitochondrial genome of the phytopathogenic basidiomycete Moniliophthora perniciosa is 109 kb in size and contains a stable integrated plasmid (2008) Mycol Res, 112, pp. 1136-1152Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., Bairoch, A., Protein identification and analysis tools on the ExPASy Server (2005) The Proteomics and Protocols Handbook, pp. 571-607. , In: Walker JM, Humana Press, TotowaGoffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H., Galibert, F., Johnston, M., Life with 6000 genes (1996) Science, 265, pp. 2077-2082Griffith, G.W., Bravo-Velasquez, E., Wilson, F.J., Lewis, D.M., Hedger, J.N., Autecology and evolution of the witches’ broom pathogen (Crinipellis perniciosa) of cocoa (1994) The Ecology of Plant Pathogens, pp. 245-265. , In: Blakeman JP and Williamson B, CAB International, WallingfordGriffith, G.W., Nicholson, J., Neinninger, A., Birch, R., Witches’ brooms and frosty pods: Two major pathogens of cacao (2003) New Zeal J Bot, 41, pp. 423-435Hall, T.A., BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT (1999) Nucleic Acids Res, 41, pp. 95-98Hof, H., Critical annotations to the use of azole antifungals for plant protection (2001) Antimicrob Agents Chemother, 45, pp. 2987-2990Jackson, C.J., Lamb, D.C., Marczylo, T.H., Parker, J.E., Manning, N.L., Kelly, D.E., Kelly, S.L., Conservation and cloning of CYP51: A sterol 14α-demethylase from Mycobacterium smegmatis (2003) Biochem Biophys Res Commun, 301, pp. 558-563James, T.Y., Kauff, F., Schoch, C.L., Matheny, P.B., Hofstetter, V., Cox, C.J., Celio, G., Miadlikowska, J., Reconstructing the early evolution of Fungi using a six-gene phylogeny (2006) Nature, 19, pp. 818-822Jones, T., Federspiel, N.A., Chibana, H., Dungan, J., Kalman, S., Magee, B.B., Newport, G., Magee, P.T., The diploid genome sequence of Candida albicans (2004) Proc Natl Acad Sci USA, 101, pp. 7329-7334Kairuz, P.B., Zuber, J.P., Jaunin, P., Buchman, T.G., Bille, J., Rossier, M., Rapid detection and identification of Candida albicans and Torulopsis (Candida) glabrata in clinical specimens by species-specific nested PCR amplification of a cytochrome P-450 lanosterol-α-demethylase (L1A1) gene fragment (1994) J Clin Microbiol, 32, pp. 1902-1907Kalb, V.F., Woods, C.W., Turi, T.G., Dey, C.R., Sutter, T.R., Loper, J.C., Primary structure of the P450 lanosterol demethylase gene from Saccharomyces cerevisiae (1987) DNA, 6, pp. 529-537Kall, L., Krogh, A., Sonnhammer, E.L., Advantages of combined transmembrane topology and signal peptide prediction- the Phobius web server (2007) Nucleic Acids Res 35:429-, p. 432Kim, D., Lim, Y.R., Ohk, S.O., Kim, B.J., Chun, Y.J., Functional expression and characterization of CYP51 from dandruffcausing Malassezia globosa (2011) FEMS Yeast Res, 11, pp. 80-87Lai, M.H., Kirsch, D.R., Nucleotide sequence of cytochrome P450 L1A1 (lanosterol 14α-demethylase) from Candida albicans (1989) Nucleic Acids Res, 17, p. 804Lamb, D.C., Kelly, D.E., Manning, N.M., Hollomon, D.W., Kelly, S.L., Expression, purification, reconstitution and inhibition of Ustilago maydis sterol 14α-demethylase (CYP 51P450) (1998) FEMS Microbiol Lett, 169, pp. 369-373Lee, C.H., Hsu, K.H., Wang, S.Y., Chang, T.T., Chu, F.H., Shaw, J.F., Cloning and characterization of the lanosterol 14α-demethylase gene from Antrodia cinnamomea (2010) J Agr Food Chem, 58, pp. 4800-4807Lees, N.D., Skaggs, B., Kirsch DR and BirdM(1995) Cloning of the late genes in the ergosterol biosynthetic pathway of Saccharomyces cerevisiae - A review Lipids, 30, pp. 221-226Lepesheva, G.I., Waterman, M.R., Sterol 14α-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms (2007) Biochim Biophys Acta, 3, pp. 467-477Luo, C.X., Schnabel, G., The cytochrome P450 lanosterol 14α-demethylase gene is a demethylation inhibitor fungicide resistance determinant in Monilia fructicola field isolates from Georgia (2008) Appl Environ Microb, 74, pp. 359-366Martin, F., Aerts, A., Ahrén, D., Brun, A., Danchin, E.G., Duchaussoy, F., Gibon, J., Pereda, V., The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis (2008) Nature, 452, pp. 88-92McQuilken, M.P., Rudgard, S.A., Sensitivity of Crinipellis periciosa to two triazole fungicides in vitro and their effect on development of the fungus in cocoa (1988) Plant Pathol, 37, pp. 499-506Meinhardt, L.W., Bellato, C.M., Rincones, J., Azevedo, R.A., Cascardo, J.C.M., Pereira, G.A.G., In vitro production of biotrophic- like cultures of Crinipellis perniciosa, the causal agent of Witches’ broom disease of Theobroma cacao (2006) Curr Microbiol, 52, pp. 191-196Mellado, E., Guerra, T.M.D., Estrela, M.C., Tudela, J.L.R., Identification of two different 14α-sterol demethylase related genes (cyp51A and cyp51B) in Aspergillus fumigatus and other Aspergillus species (2001) J Clin Microbiol 39:2431-, p. 2438Mondego, J.M.C., Carazzolle, M.F., Costa, G.G.L., Formighieri, E.F., Parizzi, L.P., Rincones, J., Cotomacci, C., Carrer, H., A genome survey of Moniliophthora perniciosa gives new insights into Witches’ broom disease of cacao (2008) BMC Genomics, 9, pp. 1-25Morales, I.J., Vohra, P.K., Puri, V., Kottom, T.J., Limper, A.H., Thomas, C.F., Characterization of a lanosterol 14α demethylase from Pneumocystis carinii (2003) Am J Resp Cell Mol, 29, pp. 232-238Mota, S.G.R., Barros, T.F., Castilho, M.S., In vitro screening and chemometrics analysis on a series of azole derivativeswith fungicide activity against Moniliophthora perniciosa (2010) J Braz Chem Soc, 21, pp. 510-519Nierman, W.C., Pain, A., Anderson, M.J., Wortman, J.R., Kim, H.S., Arroyo, J., Berriman, M., Bermejo, C., Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus (2005) Nature, 438, pp. 1151-1156Page, R.D.M., TREEVIEW: An application to display phylogenetic trees on personal computers (1996) Comput Appl Biosci, 12, pp. 357-358Park, H.G., Lee, I.S., Chun, Y.J., Yun, C.H., Johnston, J.B., Montellano, P.R.O., Kim, D., Heterologous expression and characterization of the sterol 14α-demethylase CYP51F from Candida albicans (2011) Arch Biochem Biophys, 509, pp. 9-15Pereira, J.L., Ram, A., Figueiredo, J.M., Almeida, L.C.C., Primeira ocorrência de vassoura-de-bruxa na principal região produtora de cacau do Brasil (1989) Agrotrópica, 1, pp. 79-81Petersen, T.N., Brunak, S., Heijne, G., Nielsen, H., SignalIP 4.0: Discriminating signal peptides from transmembrane regions (2011) Nat Methods, 10, pp. 785-786Pietila, M.P., Vohra, P.K., Sanyat, B., Wengenack, N.L., Raghavakaimal, S., Thomas, C.F., Cloning and characterization of CYP51 from Mycobacterium avium (2006) Am J Resp Cell Mol, 35, pp. 236-240Pires, A.B.L., Gramacho, K.P., Silva, D.C., Góes-Neto, A., Silva, M.M., Muniz-Sobrinho, J.S., Porto, R.F., Cascardo, J.C.M., Early development of Moniliophthora perniciosa basidiomata and developmentally regulated genes (2009) BMC Microbiol, 9, p. e158Purdy, L.H., Schimidt, R.A., Status of cacao witches’ broom: Biology, epidemiology, and management (1996) Annu Rev Phytopathol, 34, pp. 573-594Raeder, U., Broda, P., Rapid preparation of DNA from filamentous fungi (1985) Lett Appl Microbiol, 1, pp. 17-20Revankar, S.G., Fu, J., Rinaldi, M.G., Kelly, S.L., Kelly, D.E., Lamb, D.C., Keller, S.M., Wickes, B.L., Cloning and characterization of the lanosterol 14α-demethylase (ERG11) gene in Cryptococcus neoformans (2004) Biochem Biophys Res Commun, 324, pp. 719-728Rincones, J., Scarpari, L.M., Carazzolle, M.F., Mondego, J.M.C., Formighieri, E.F., Barau, J.G., Costa, G.G.L., Vilas-Boas, L.A., Differential gene expression between the biotrophic-like and saprotrophic mycelia of the witches’ broom pathogen Moniliophthora perniciosa (2008) Mol Plant Microbe Int, 21, pp. 891-908Rio, M.C.S., Oliveira, B.V., Tomazella, D.P.T., Silva, J.A.F., Pereira, G.A.G., Production of calcium oxalate crystals by the basidiomycete Moniliophthora perniciosa, the causal agent of witches’ broom disease of cacao (2008) Curr Microbiol, 56, pp. 363-370Rozman, D., Stromstedt, M., Tsui, L.C., Scherer, S.W., Waterman, M.R., Structure and mapping of the human lanosterol 14α-demethylase gene (CYP51) encoding the cytochrome P450 involved in cholesterol biosynthesis: Comparison of exon/intron organization with other mammalian and fungal CYP genes (1996) Genomics, 38, pp. 371-381Sheng, C., Miao, Z., Ji, H., Yao, J., Wang, W., Che, X., Dong, G., Zhang, W., Three-dimensional model of lanosterol 14α-demethylase from Cryptococcus neoformans: Active- site characterization and insights into azole binding (2009) Antimicrob Agents Chemother, 53, pp. 3487-3495Sigrist, C.J.A., Cerutti, L., Castro, E., Langendijk-Genevaux, P.S., Bulliard, V., Bairoch, A., Hulo, N., PROSITE, a protein domain database for functional characterization and annotation (2009) Nucleic Acids Res, 38, pp. 161-166Stajich, J.E., Wilke, S.K., Ahrén, D., Au, C.H., Birren, B.W., Borodovsky, M., Burns, C., Cheng, C.K., Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus) (2010) Proc Natl Acad Sci USA, 107, pp. 11889-11894Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S., Morgenstern, B., AUGUSTUS: Ab initio prediction of alternative transcripts (2006) Nucleic Acids Res, 34, pp. 435-439Swofford, D.L., PAUP - Phylogenetic Analysis Using Parsimony (and other methods). Version 4.0b10 (2002) Sinauer Associates, , Sunderland, MATer-Hovhannisyan, V., Lomsadze, L., Chernoff, Y.O., Borodovsky, M., Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training (2008) Genome Res, 18, pp. 1979-1990Thompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weigh matrix choice (1994) Nucleic Acids Res, 22, pp. 4673-4680Veen, M., Lang, C., Interactions of the ergosterol biosynthetic pathway with other lipid pathways (2005) Biochem Soc Trans, 33, pp. 1178-1181Warrilow, A.G.S., Melo, N., Martel, C.M., Parker, J.E., Nes, W.D., Kelly, S.L., Kelly, D.E., Expression, purification and characterization of Aspergillus fumigatus sterol 14α demethylase (CYP51) isoenzymes A and B (2010) Antimicrob Agents Chemother, 54, pp. 4225-4234Waterman, M.R., Lepesheva, G.I., Sterol 14 _-demethylase, an abundant and essential mixed-function oxidase (2005) Biochem Biophys Res Commun, 338, pp. 418-422Wood, H.M., Dickinson, M.J., Lucas, J.A., Dyer, P.S., Cloning of the CYP51 gene from the eyespot pathogen Tapesia yallundae indicates that resistance to the DMI fungicide prochloraz is not related to sequence changes in the gene encoding the target site enzyme (2001) FEMS Microbiol Lett, 196, pp. 183-187Zhao, L., Liu, D., Zhang, Q., Zhang, S., Wan J and XiaoW(2007) Expression and homology modeling of sterol 14α-demethylase from Penicillium digitatium FEMS Microbiol Lett, 277, pp. 37-4

    Three-body structure of low-lying 18Ne states

    Full text link
    We investigate to what extent 18Ne can be descibed as a three-body system made of an inert 16O-core and two protons. We compare to experimental data and occasionally to shell model results. We obtain three-body wave functions with the hyperspherical adiabatic expansion method. We study the spectrum of 18Ne, the structure of the different states and the predominant transition strengths. Two 0+, two 2+, and one 4+ bound states are found where they are all known experimentally. Also one 3+ close to threshold is found and several negative parity states, 1-, 3-, 0-, 2-, most of them bound with respect to the 16O excited 3- state. The structures are extracted as partial wave components, as spatial sizes of matter and charge, and as probability distributions. Electromagnetic decay rates are calculated for these states. The dominating decay mode for the bound states is E2 and occasionally also M1.Comment: 17 pages, 5 figures (version to appear in EPJA

    The Presence of Flavonoids in Some Products and Fruits of the Genus Eugenia: An Integrative Review

    Get PDF
    ReviewThe Myrtaceae family, one of the most prominent botanical families, is represented in Brazil with different fruit species, rich in bioactive compounds and gastronomically appreciated. This study aimed to carry out an integrative review on the genus Eugenia, highlighting the pitangueira (E. uniflora L.), cagaiteira (E. dysenterica), grumixameira (E. brasiliensis), pereira (E. klotzschiana O. Berg), and uvaieira (E. pyriformis Cambess) and which flavonoids are present in these fruits. Articles published between 2016 and 2021 were selected from the following databases: Google Scholar, Periódicos CAPES, Scielo, and Science Direct. According to each database, the descriptors used as a search strategy addressed the popular and scientific names of the five selected species, associated or not with the term “flavonoid,” according to each database. The results showed that quercetin was the main flavonoid identified in the fruits, and the principal extraction method used was HPLC. Other interesting compounds, such as catechin, epicatechin, rutin, myricetin, and kaempferol, were also found. However, the amount and type of flavonoids detected varied according to the applied methodology. Hence, these studies highlight the importance of species of the genus Eugenia, which promotes beneficial health effects and possible applicability to the food and pharmaceutical industryinfo:eu-repo/semantics/publishedVersio
    corecore